
Building Desktop Applications with Web Services in a Message-based MVC

Paradigm

Xiaohong Qiu1, 2

1EECS Department, Syracuse University
2Community Grids Lab, Indiana University

501 Morton N. St, Suite 224, Bloomington, IN 47404, U.S.A

xqiu@indiana.edu

Abstract

Over the past decade, classic client side

applications with Model-View-Controller (MVC)

architecture haven’t changed much but become

more complex. In this paper, we present an

approach of building desktop applications with

Web Services in an explicit message-based MVC

paradigm. By integrating with our

publish/subscribe messaging middleware, it

makes SVG browser (a Microsoft PowerPoint

like client application) with Web Service style

interfaces universally accessible from different

client platforms Windows, Linux, MacOS,

PalmOS and other customized ones.

Performance data suggests that this scheme of

building application around messages is a

practical architecture for the next generation

Web application client.

Keywords

Message, MVC, Web service, SVG and

publish/subscribe

1. Introduction

Web Services are becoming an increasingly

important feature of Internet and Grid systems.

They support a loosely coupled service oriented

architecture that builds on previous distributed

object architectures like CORBA, Java RMI, and

COM to provide scalable interoperable systems.

The broad applicability of this approach includes

enterprise software, e-Science and e-Business.

Correspondingly there are a growing number of

powerful tools that are available for building,

maintaining and accessing Web Service-based

systems. These tools include portals that allow

user frontends to Web Services. This model for

user interaction has new standards like portlets

with WSRP (Web Services for Remote Portlets)

and the Java Specification Request JSR168

supporting lightweight interfaces to the backend

resources. This architecture shown in fig.1

implements the Model-View-Controller or MVC

[1] architecture with a clean message based

interface partially specified by the portlet

standard.

We have a general approach of building Web

applications centered around messages. The key

challenge is to exploit this concept in design and

implementation to provide scalable interoperable

systems. Specifically we investigate a universal

modular design with messaging linkage service

model that converge desktop applications, Web

applications, and Internet collaboration to

achieve reusability, scalability, interoperability

and pervasive accessibility. We have

systematically carried out our work by proposing

an “explicit message-based MVC” paradigm

(MMVC) as the general architecture for Web

applications [2]; presenting an approach of

building “collaboration as a Web Service” by

decomposition of MMVC in a three-stage

pipeline architecture for three collaboration types

 monolithic, thin client and interactive client

[3]; bridging the gap between desktop and Web

application by leveraging the existing desktop

application

with a Web

service

interface

through

“MMVC in a

publish/subscr

ibe scheme”,

which is the

focus of this

paper;

identifying

some key

issues that

influence message-based Web applications with

a detailed analysis of performance in a

presentational style application experiment with

rich Web content and high client interactivity [4].

Elsewhere we discuss SIMD and MIMD

collaboration as the general architecture of

“collaboration as a Web service” model [5].

R F I O

ViewView

Portal
Aggregate WS User Facing fragments

desktop handheld phone

Input port Output port

User Facing Port

Port
Facing

Resource

Web Service

Application or

Model

Figure1 Portlet Approach to Web Services and

their user interfaces

WSRP

and
JSR168

Portlets

R F I O

ViewView

Portal
Aggregate WS User Facing fragments

desktop handheld phone

Input port Output port

User Facing Port

Port
Facing

Resource

Web Service

Application or

Model

R F I O

ViewView

Portal
Aggregate WS User Facing fragments

Portal
Aggregate WS User Facing fragments

desktopdesktop handheldhandheld phonephone

Input port Output port

User Facing Port

Port
Facing

Resource

Web Service

Application or

Model
User Facing Port

Port
Facing

Resource

Web Service

Application or

Model

Figure1 Portlet Approach to Web Services and

their user interfaces

WSRP

and
JSR168

Portlets

Figure 2 MVC in Publish/Subscribe

2a Conventional MVC paradigm

Display

Control

ModelView

2b Explicit message-based Publish/Subscribe MVC model

Model

Subscribe UI event

View Subscrib
e re

nderin
g

Publis
h UI eve

nt

Publish rendering

Control

Figure 2 MVC in Publish/Subscribe

2a Conventional MVC paradigm

Display

Control

ModelView

2a Conventional MVC paradigm

DisplayDisplay

ControlControl

ModelView

2b Explicit message-based Publish/Subscribe MVC model

Model

Subscribe UI event

View Subscrib
e re

nderin
g

Publis
h UI eve

nt

Publish rendering

Control

2b Explicit message-based Publish/Subscribe MVC model

ModelModel

Subscribe UI event

View Subscrib
e re

nderin
g

Publis
h UI eve

nt

Publish rendering

ControlControl

The general MVC approach of fig. 2a) is a well-

established paradigm, which has been used for

many years. As we describe later in more detail,

traditional MVC applications employ method-

based interactions between the components with

this approach giving the needed high

performance for interactive applications. In this

paper, we explore “explicit message-based

MVC” (MMVC) a different approach with

MVC being used systematically but with

message based interactions (shown in fig. 2b),

between the model and the view components.

We suggest that modern computers and networks

are fast enough that this approach will give

adequate performance for desktop applications

such as those in the Microsoft Office Suite. We

embody this idea as the “MVC rule of the

Millisecond” [6]. This asserts that message based

interactions between “nearby” components have

an intrinsic delay of a few milliseconds and so

this linkage approach is possible whenever such

a delay is acceptable. Simple non-optimized Java

messaging gives such a delay whenever the

components are either on the same computer or

on machines with a local area connection.

In this paper, we explore this area and make two

contributions. Firstly we look at existing

method-based MVC application – the Batik SVG

browser from Apache [7] – and convert it into a

message-based approach as contrasted in figures

2a) and 2b). We discuss some of the issues that

came up in this conversion. Secondly we use this

message-based version of SVG to explore the

overhead in the message-based approach. We

find it represents about a 20% overhead for

“model’ and “view” distributed in different sites

on Indiana University’s Bloomington campus

and the user does not distinguish the interactive

experience in switching from method to

message-based interactions.

2. Technology Background: DOM and SVG

W3C Document Object Model (DOM) [8]

defines “a platform- and language-neutral
interface that allows programs and scripts to

dynamically access and update the content,

structure and style of documents” and a generic

event model, which implemented by version 5

browsers (e.g. Mozilla and Internet Explorer).

DOM can reflect structure of Meta data

abstracted by XML schema. DOM also allows

any language bindings; therefore it can be used

by variety of applications. Scalable Vector

Graphics (SVG) [9], as defined by W3C, is “a

language for describing two-dimensional
graphics and graphical applications in XML”.

SVG is an example of DOM application.

Compared with HTML content, SVG has richer

web graphics flavor with additional features

inherited from XML and DOM which makes it a

unique technology that has been widely used by

graphical authoring tools, GIS system and data

visualization. Apache Batik SVG browser is a

stand-alone client application, which is written in

Java apart from a few native classes; there are

also customized SVG implementations for

handheld devices.

3 Message-based MVC and SVG

3.1 Introduction

We choose an existing system Batik SVG

browser [7], and modify its architecture from a

method-based desktop application to a message-

based one. This has several implications. The

message-based architecture allows one to build

desktop applications as web services and so

unify traditional desktop and web service plus

portal approaches. This unification makes

collaborative applications straightforward to

build as described in section 4. Further the

separation of model and view makes it easier to

support diverse client devices and operating

systems. This could be significant with the

growing interest in PDA and Linux clients. Note

our strategy allows “long distance” linkage

between the “model” (business logic of

application) and view as well as their

cooperation on local networks as within a

campus. However transcontinental latencies are

hundreds to thousands of milliseconds and so

this cannot be used for interactive experience. As

we describe later, we will use the same

messaging infrastructure that has been used to

support large Grid applications. This unification

of Grid and client applications into a single

message-based architecture is key to our paper.

We can use our approach for interactive

applications when model and view are nearby

and allow collaboration and traditional Web

portal use for remote access.

Our first goal is a complete analysis of the

structure and interaction between components of

a real client application. Batik SVG browser is

an Apache open source project that implements

SVG specification version 1.0. Such experience

has general significance as it helps us in

understanding of similar commercial tools such

as Microsoft PowerPoint, Adobe Illustrator and

PhotoShop, Corel Draw, and Macromedia Flash,

which have proprietary implementations.

Secondly, our approach allows building

collaborative SVG as a special case of our

general Collaboration as Web Service

architecture. This work has been discussed in our

earlier papers in Internet Computing 2003 [2]

and SVG Open 2003 [3]. We presented a

multiplayer chess game as a test case of our

collaborative SVG infrastructure without

decomposition of the client application.

Thirdly, we discuss the conversion of a client

application into a distributed system and identify

the difference in design principles. This approach

allows maximum reusability of existing

components in Web application deployment and

also unifies desktop and Web applications

architecture in a message-based service model.

MVC is a frequently used paradigm in modern

architecture design (e.g. Microsoft Windows). In

a “conventional” MVC, “controller” executes its

tasks through method calls since messages are

hidden in system level. We make a critical

observation, namely “conventional” MVC has to

be replaced by an “explicit message-based”

MVC in order to enable components of the

application to be distributed. In our approach, we

use “explicit control messages” to abstract the

semantic meanings of “controller” so that

messages of the original system are exposed and

pulled into application level. Such abstraction

generates structural changes as the following:

a) Original client application is physically split

into client user interface (“view”) and core

functional component (“model”). The latter

naturally becomes a Web Service on server side.

b) Method calls, which play the role as

“controller” in a client application, are taken

over by “explicit control messages” that

communicate between client interface and Web

Service server through network.

c) Our approach requires us to support our model

view linkage with a high performance messaging

middleware infrastructure. We use

NaradaBrokering [10], which has been

separately developed and provides a variety of

publish/subscribe models including peer-to-peer

and Java Message Service (JMS) emulation. Our

use for collaborative SVG would exploit these

latter Grid messaging capabilities of

NaradaBrokering. The changes bring up issues

that cause a challenge to the system:

Timing becomes a compelling issue with the

separation of client and Web Service server,

original assumption and design principle break

since time scope drastically increases from tens

of microsecond level (e.g. a Java method call)

to a few milliseconds level (network latency

plus system overhead).

Object serialization is a must have toolkit

messages, as a linkage vehicle, contains

component information from both sides and

keep context same. Synchronization is a factor

to consider for context consistency.

3.2 Message-based Event model

The basic idea is illustrated in fig. 3. Traditional

event-based programming is used extensively in

the Batik SVG browser and most modern

applications. Different parts of a program are

linked asynchronously with one part producing

events that are passed to listeners whose callback

method has been passed to the producer. As

shown in fig. 3b) this can also be implemented

with explicit messages where listeners subscribe

to an event class (topic) and events producers

publish them to this topic. Our strategy is to

replace the listener model of fig. 3a) by the

publish/subscribe broker model of fig. 3b). Note

that either approach can use explicit queues

(maintained on a broker in the message case) or

alternatively integrate the broker into the

producer as in most simple method-based event

models. One can use this strategy in several parts

of the SVG browser and in doing so produce

multiple web services coordinated in a single

application; there are natural event linkages

between the client user interface and the GVT

(or Graphic Vector Toolkit, an internal module

to represent graphical view of DOM) tree used in

Figure 3 Message or method based Publish/Subscribe

3a) method based

B
register call back method

invoke call back method

with event

A

3b) message based

Subscribe

to
event class

Broker

Set up
an

eve
nt cl

ass
(to

pi
c)

pu
bl

is
h

an
eve

nt
cl

as
s

Send
event BA

Figure 3 Message or method based Publish/Subscribe

3a) method based

BB
register call back method

invoke call back method

with event

AA

3b) message based

Subscribe

to
event class

Broker

Set up
an

eve
nt cl

ass
(to

pi
c)

pu
bl

is
h

an
eve

nt
cl

as
s

Send
event BBA

Batik;

another

between

GVT and

the DOM

tree and

finally

that

between the DOM and the Java or JavaScript

application. After substantial experimentation,

we chose to split the SVG browser between the

DOM and GVT tree. The resultant MMVC

architecture is shown in figure 4. This choice has

the advantage that it naturally generalizes to

other DOM applications. However we made for

more pragmatic reasons, as other choices

appeared to require more restructuring of the

existing software.

4. Performance

We have started an extensive series of

performance measurements to demonstrate the

viability of our approach. The main issues are the

algorithmic change from breaking the code into

two and the two-way transit time is only 20% of

the total processing time in the case of local

brokers. We separately measured the overhead in

NaradaBrokering itself which consisting of

forming message objects, serialization and

network transit time with four hops. This

overhead is 5-15 milliseconds depending on the

operating mode of the Broker in simple stand-

alone measurements. The contribution of

NaradaBrokering to the overhead is larger than

this (about 30 milliseconds in preliminary

measurements) due to thread scheduling

overhead interfacing with the complex SVG

application. We will discuss this and

optimizations to the system performance in

future papers [4].

5. Conclusions

We believe our prototype shows how a message-

based MVC (three-stage pipeline) model can

generate a powerful application paradigm

suitable for SVG and other presentation style

applications. As SVG is an application of the

W3C DOM, we can generalize the approach for

other W3C or similar DOM based applications.

Our approach suggests that one need not develop

special “collaborative” applications. Rather any

application developed as a Web service can be

made collaborative using the tools and

architectural principles discussed in this paper.

Note that Moore’s law implies that computer

performance will continue to improve while

networks will also continue to increase in

bandwidth with however latency for long

distance linkage remaining higher than that

needed for interactive use. Thus inevitable

infrastructure improvements will tend to make

our approach more attractive in the future. These

ideas can also suggest a uniform approach to

user interface design with desktop and web

applications sharing a common portlet (WSRP,

JSR168)-based architecture.

This could motivate the development of new

desktop applications with many capabilities not

present in today’s systems such as OpenOffice

and Microsoft Office. Other research in our

laboratory is looking at extending our ideas to

OpenOffice while a limited implementation is

possible using the rather crude event interface

exposed for PowerPoint. These ideas can unify

PDA and desktop, as well as Linux, MacOS,

Windows and PalmOS applications.

References

1) G. Lee, Object oriented GUI application
development. Prentice Hall, 1994. ISBN: 0-

13-363086-2.

2) Xiaohong Qiu et. al. Internet Collaboration
using the W3C Document Object Model in

Proceedings of the 2003 International

Conference on Internet Computing, Las

Vegas June 2003.

3) Xiaohong Qiu et. al. Collaborative SVG as
A Web Service in Proceedings of SVG
Open, Vancouver, Canada, July 2003.

4) Xiaohong Qiu, Shrideep Pallickara, and

Ahmet Uyar Making SVG a Web Service in

a Message-based MVC Architecture

submitted manuscript for SVG Open

Conferences, Tokyo, Japan, September 2004.

5) Xiaohong Qiu and Anumit Jooloor,

Message-based Web Services Architecture
for e-Learning to appear in International

Conference on Education and Information

Systems: Technologies and Applications,

Orlando, Florida, July 2004.
6) Geoffrey C. Fox, Software Development

around a Millisecond in CISE Magazine.
7) Apache Batik SVG Toolkit.
8) W3C Document Object Model (DOM)

Level 2 Core Specification.

9) W3C Scalable Vector Graphics (SVG)

version 1.0 Specification.

10) Community Grids Lab NaradaBrokering

system.

Figure 4 SVG browser derived from message-based MVC

Application

(JavaScript)

Application

(JavaScript)

SVG DOMSVG DOM

GVTGVT

RendererRenderer

Rendering as messagesEvents as messages

Messages contain control information

Figure 4 SVG browser derived from message-based MVC

Application

(JavaScript)

Application

(JavaScript)

SVG DOMSVG DOM

GVTGVT

RendererRenderer

Rendering as messagesEvents as messages

Messages contain control information

	footer1:

